homotopy Meaning in Bengali
Noun:
সমসংস্থা,
Similer Words:
homozygoushomunculus
homy
hone
honed
hones
honest
honestly
honesty
honey
honeybee
honeycomb
honeycombed
honeycombing
honeydew
homotopy শব্দের বাংলা অর্থ এর উদাহরণ:
"হাত" শব্দটি কখনও কখনও বিবর্তনবাদী অ্যানাটমিস্টদের মতে, সমসংস্থা নিয়ে গবেষণা করার সময়, অগ্রপদের উপাঙ্গকে বোঝায়, যেমন, তিনটি আঙুলের পাখির ।
যেহেতু ভগাঙ্কুর পুরুষ শিশ্নের সমসংস্থা হয়, এটি যৌন উদ্দীপনা পেতে তার ক্ষমতা সমতুল্য ।
জীববিজ্ঞানের ভাষায়, সমসংস্থা দ্বারা ভিন্ন শ্রেণীর প্রাণীর মধ্যে পূর্বপুরুষের মাধ্যমে পাওয়া একজোড়া সমধরনার গঠন অথবা জিনগত সামঞ্জস্যকে বোঝায় ।
বিরুদ্ধে সহিংসতা প্রাণী যৌনাচরণ যৌন নির্বাচন যৌন-আবেদনময় পুত্র প্রকল্প সমসংস্থা (জীববিজ্ঞান) সাইকোপ্যাথি শুক্রাণু প্রতিযোগিতা যৌন বলপ্রয়োগ যৌন দ্বন্দ্ব ।
homotopy's Usage Examples:
a deformation being called a homotopy between the two functions.
A notable use of homotopy is the definition of homotopy groups and cohomotopy groups.
is the first and simplest homotopy group.
The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent (or the stronger.
topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence.
In mathematics, homotopy groups are used in algebraic topology to classify topological spaces.
The first and simplest homotopy group is the fundamental.
In mathematics, homotopy theory is a systematic study of situations in which maps come with homotopies between them.
Whitehead to meet the needs of homotopy theory.
In the mathematical field of algebraic topology, the homotopy groups of spheres describe how spheres of various dimensions can wrap around each other.
In mathematics, particularly in homotopy theory, a model category is a category with distinguished classes of morphisms ('arrows') called 'weak equivalences'.
technical difficulties, but they all determine the same homotopy category, known as the stable homotopy category.
or "homotopy"; the latter omit condition [TLH3].
So from now on we refer to homotopy (homotope) in the sense of theorem 2-1 as a tubular homotopy (resp.
In category theory, a branch of mathematics, Grothendieck's homotopy hypothesis states that the ∞-groupoids are equivalent to the topological spaces.
homotopy type of a point.
It follows that all the homotopy groups of a contractible space are trivial.
Therefore any space with a nontrivial homotopy.
additional condition (the homotopy lifting property) guaranteeing that it will behave like a fiber bundle from the point of view of homotopy theory.
Homotopy Kan extension The notion of homotopy Kan extension and hence in particular that of homotopy limit and homotopy colimit has a direct.
purposes of homotopy theory.
Specifically, the category of simplicial sets carries a natural model structure, and the corresponding homotopy category is.
In mathematics, specifically in homotopy theory, a classifying space BG of a topological group G is the quotient of a weakly contractible space EG (i.
nontrivial homotopy group.
As such, an Eilenberg–MacLane space is a special kind of topological space that can be regarded as a building block for homotopy theory;.
the homotopy groups stabilize, and πk(O(n + 1)) = πk(O(n)) for n > k + 1: thus the homotopy groups of the stable space equal the lower homotopy groups.