<< nabisco nablas >>

nabla Meaning in Bengali



Noun:

ন্যাবলা,





nabla শব্দের বাংলা অর্থ এর উদাহরণ:

ন্যাবলা একটি প্রতীকের নাম, এর প্রতীকটির আকৃতি হচ্ছে: ∇ {\displaystyle \nabla } ।

তম (ডিগ্রাফ) গণিত, বিজ্ঞান এবং ইঞ্জিনিয়ারিংয়ে ব্যবহৃত গ্রিক অক্ষর ∇ - ন্যাবলা প্রতীক স্বরবর্ণ ব্যঞ্জনবর্ণ বাংলা বর্ণমালা বাংলা বর্ণমালা ইংরেজি বর্ণমালা ।

\nabla \cdot } ন্যাবলা ডট ডাইভারজেন্স অপারেটর (অনেক সময় "ডেল ডট" উচ্চারণ করা হয়) প্ৰতি মিটার (m−1) ∇ × {\displaystyle \nabla \times } ন্যাবলা ক্ৰস কাৰ্ল ।

{\frac {\partial z}{\partial x}}} (পড়ুন, x এর সাথে z এর আংশিক ডেরিভেটিভ) ন্যাবলা একটি প্রতীকের নাম, এর প্রতীকটির আকৃতি হচ্ছে: ∇ {\displaystyle \nabla } ।

nabla's Usage Examples:

{\displaystyle 0=\nabla \cdot \nabla \times \mathbf {B} =\mu _{0}\left(\nabla \cdot \mathbf {J} +\varepsilon _{0}{\frac {\partial }{\partial t}}\nabla \cdot \mathbf.


variables is the vector field (or vector-valued function) ∇ f {\displaystyle \nabla f} whose value at a point p {\displaystyle p} is the vector whose components.


symbols ∇ ⋅ ∇ {\displaystyle \nabla \cdot \nabla } , ∇ 2 {\displaystyle \nabla ^{2}} (where ∇ {\displaystyle \nabla } is the nabla operator), or Δ {\displaystyle.


\nabla \mathbf {u} \right)=-\nabla p+\nabla \cdot \left\{\mu \left(\nabla \mathbf {u} +(\nabla \mathbf {u} )^{\mathrm {T} }-{\tfrac {2}{3}}(\nabla \cdot.


{\begin{aligned}\nabla ^{2}(\nabla \psi )'=\nabla (\nabla \cdot (\nabla \psi ))=\nabla \left(\nabla ^{2}\psi \right)\\\nabla ^{2}(\nabla \cdot \mathbf {A} )'=\nabla \cdot.


or nabla, is an operator used in mathematics (particularly in vector calculus) as a vector differential operator, usually represented by the nabla symbol.


{\displaystyle \nabla ^{2}\!f=0\qquad {\mbox{or}}\qquad \Delta f=0,} where Δ = ∇ ⋅ ∇ = ∇ 2 {\displaystyle \Delta =\nabla \cdot \nabla =\nabla ^{2}} is the.


− ∇ φ ) = − ∇ 2 φ = ρ ε , {\displaystyle \nabla \cdot \mathbf {E} =\nabla \cdot (-\nabla \varphi )=-{\nabla }^{2}\varphi ={\frac {\rho }{\varepsilon }}.


{\displaystyle \left(\nabla _{g\mathbf {x} +h\mathbf {y} }\mathbf {u} \right)_{p}=\left(\nabla _{\mathbf {x} }\mathbf {u} \right)_{p}g+\left(\nabla _{\mathbf {y}.


(\mathbf {r} ,t)={\frac {\hbar }{2mi}}\left[\Psi ^{*}\left(\nabla \Psi \right)-\Psi \left(\nabla \Psi ^{*}\right)\right].


_{n-1}\right)^{T}\left[\nabla F(\mathbf {x} _{n})-\nabla F(\mathbf {x} _{n-1})\right]\right|}{\left\|\nabla F(\mathbf {x} _{n})-\nabla F(\mathbf {x} _{n-1})\right\|^{2}}}}.


{p}}=-i\hbar \nabla ,} is the momentum operator where a ∇ {\displaystyle \nabla } is the del operator.


The dot product of ∇ {\displaystyle \nabla } with itself.


{\displaystyle \nabla \cdot (\varphi \mathbf {F} )=(\nabla \varphi )\cdot \mathbf {F} +\varphi (\nabla \cdot \mathbf {F} ).


{1}{n}}\,\nabla n=-RT\,\nabla (\ln(n/n^{\text{eq}}))} .


Electrostatic force caused by electric potential gradient: q ∇ φ {\displaystyle q\,\nabla \varphi.


{\displaystyle \nabla } : R ( X , Y ) Z = ∇ X ∇ Y Z − ∇ Y ∇ X Z − ∇ [ X , Y ] Z {\displaystyle R(X,Y)Z=\nabla _{X}\nabla _{Y}Z-\nabla _{Y}\nabla _{X}Z-\nabla _{[X.


v may be denoted by any of the following: ∇ v f ( x ) , {\displaystyle \nabla _{\mathbf {v} }{f}(\mathbf {x} ),} f v ′ ( x ) , {\displaystyle f'_{\mathbf.


d s , {\displaystyle \iint _{D}\nabla \cdot (v\nabla u)\,dx\,dy=\iint _{D}\nabla u\cdot \nabla v+v\nabla \cdot \nabla u\,dx\,dy=\int _{C}v{\frac {\partial.


{\displaystyle \nabla _{a}=\nabla _{(a\cdot e^{i})e_{i}}=(a\cdot e^{i})\nabla _{e_{i}}=a\cdot (e^{i}\nabla _{e_{i}})=a\cdot \nabla .


{f} }{\partial x_{n}}}\end{bmatrix}}={\begin{bmatrix}\nabla ^{\mathrm {T} }f_{1}\\\vdots \\\nabla ^{\mathrm {T} }f_{m}\end{bmatrix}}={\begin{bmatrix}{\dfrac.


rotational and alternative notations rot F or the cross product with the del (nabla) operator ∇ × F are sometimes used for curl F.



nabla's Meaning in Other Sites